상세보기

Using class-based feature selection for the classification of hyperspectral data
Abstract : The rapid advances in hyperspectral sensing technology have made it possible to collect remote-sensing data in hundreds of bands. However, the data-analysis methods that have been successfully applied to multispectral data are often limited in achieving satisfactory results for hyperspectral data. The major problem is the high dimensionality, which deteriorates the classification due to the Hughes Phenomenon. In order to avoid this problem, a large number of algorithms have been proposed, so far, for feature reduction. Based on the concept of multiple classifiers, we propose a new schema for the feature selection procedure. In this framework, instead of using feature selection for whole classes, we adopt feature selection for each class separately. Thus different subsets of features are selected at the first step. Once the feature subsets are selected, a Bayesian classifier is trained on each of these feature subsets. Finally, a combination mechanism is used to combine the outputs of these classifiers. Experiments are carried out on an Airborne Visible/Infrared Imaging Spectroradiometer (AVIRIS) data set. Encouraging results have been obtained in terms of classification accuracy, suggesting the effectiveness of the proposed algorithms.